skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaff, David P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Three devastating earthquakes ofMW ≥ 5.9 activated a complex system of high‐angle normal, antithetic, and sub‐horizontal detachment faults during the 2016–2017 central Italy seismic sequence. Waveform cross‐correlation based double‐difference location of nearly 400,000 aftershocks illuminate complex, fine‐scale structures of interacting fault zones. The Mt. Vettore–Mt. Bove (VB) normal fault exhibits wide and complex damage zones, including a system of bookshelf faults that intersects the detachment zone. In the Laga domain, a comparatively narrow, shallow dipping segment of the deep Mt. Gorzano fault progressively ruptures through the detachment zone in four subsequentMW∼ 5.4 events. Reconstructed fault planes show that the detachment zone is fragmented in four sub‐horizontal, partly overlaying shear planes that correlated with the extent of the mainshock ruptures. We find a new, deep reaching seismic barrier that coincides with a bend in the VB fault and may play a role in controlling rupture evolution. 
    more » « less